\(\int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx\) [89]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 201 \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=\frac {a^4 \tan (c+d x)}{d}+\frac {2 a^3 b \tan ^2(c+d x)}{d}+\frac {2 a^2 \left (a^2+3 b^2\right ) \tan ^3(c+d x)}{3 d}+\frac {a b \left (2 a^2+b^2\right ) \tan ^4(c+d x)}{d}+\frac {\left (a^4+12 a^2 b^2+b^4\right ) \tan ^5(c+d x)}{5 d}+\frac {2 a b \left (a^2+2 b^2\right ) \tan ^6(c+d x)}{3 d}+\frac {2 b^2 \left (3 a^2+b^2\right ) \tan ^7(c+d x)}{7 d}+\frac {a b^3 \tan ^8(c+d x)}{2 d}+\frac {b^4 \tan ^9(c+d x)}{9 d} \]

[Out]

a^4*tan(d*x+c)/d+2*a^3*b*tan(d*x+c)^2/d+2/3*a^2*(a^2+3*b^2)*tan(d*x+c)^3/d+a*b*(2*a^2+b^2)*tan(d*x+c)^4/d+1/5*
(a^4+12*a^2*b^2+b^4)*tan(d*x+c)^5/d+2/3*a*b*(a^2+2*b^2)*tan(d*x+c)^6/d+2/7*b^2*(3*a^2+b^2)*tan(d*x+c)^7/d+1/2*
a*b^3*tan(d*x+c)^8/d+1/9*b^4*tan(d*x+c)^9/d

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {3167, 962} \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=\frac {a^4 \tan (c+d x)}{d}+\frac {2 a^3 b \tan ^2(c+d x)}{d}+\frac {2 b^2 \left (3 a^2+b^2\right ) \tan ^7(c+d x)}{7 d}+\frac {2 a b \left (a^2+2 b^2\right ) \tan ^6(c+d x)}{3 d}+\frac {a b \left (2 a^2+b^2\right ) \tan ^4(c+d x)}{d}+\frac {2 a^2 \left (a^2+3 b^2\right ) \tan ^3(c+d x)}{3 d}+\frac {\left (a^4+12 a^2 b^2+b^4\right ) \tan ^5(c+d x)}{5 d}+\frac {a b^3 \tan ^8(c+d x)}{2 d}+\frac {b^4 \tan ^9(c+d x)}{9 d} \]

[In]

Int[Sec[c + d*x]^10*(a*Cos[c + d*x] + b*Sin[c + d*x])^4,x]

[Out]

(a^4*Tan[c + d*x])/d + (2*a^3*b*Tan[c + d*x]^2)/d + (2*a^2*(a^2 + 3*b^2)*Tan[c + d*x]^3)/(3*d) + (a*b*(2*a^2 +
 b^2)*Tan[c + d*x]^4)/d + ((a^4 + 12*a^2*b^2 + b^4)*Tan[c + d*x]^5)/(5*d) + (2*a*b*(a^2 + 2*b^2)*Tan[c + d*x]^
6)/(3*d) + (2*b^2*(3*a^2 + b^2)*Tan[c + d*x]^7)/(7*d) + (a*b^3*Tan[c + d*x]^8)/(2*d) + (b^4*Tan[c + d*x]^9)/(9
*d)

Rule 962

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0] && (IGtQ[m, 0] || (EqQ[m, -2] && EqQ[p, 1] && EqQ[d, 0]))

Rule 3167

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Dist[-d^(-1), Subst[Int[x^m*((b + a*x)^n/(1 + x^2)^((m + n + 2)/2)), x], x, Cot[c + d*x]], x] /; FreeQ[
{a, b, c, d}, x] && IntegerQ[n] && IntegerQ[(m + n)/2] && NeQ[n, -1] &&  !(GtQ[n, 0] && GtQ[m, 1])

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {(b+a x)^4 \left (1+x^2\right )^2}{x^{10}} \, dx,x,\cot (c+d x)\right )}{d} \\ & = -\frac {\text {Subst}\left (\int \left (\frac {b^4}{x^{10}}+\frac {4 a b^3}{x^9}+\frac {2 \left (3 a^2 b^2+b^4\right )}{x^8}+\frac {4 a b \left (a^2+2 b^2\right )}{x^7}+\frac {a^4+12 a^2 b^2+b^4}{x^6}+\frac {4 a b \left (2 a^2+b^2\right )}{x^5}+\frac {2 \left (a^4+3 a^2 b^2\right )}{x^4}+\frac {4 a^3 b}{x^3}+\frac {a^4}{x^2}\right ) \, dx,x,\cot (c+d x)\right )}{d} \\ & = \frac {a^4 \tan (c+d x)}{d}+\frac {2 a^3 b \tan ^2(c+d x)}{d}+\frac {2 a^2 \left (a^2+3 b^2\right ) \tan ^3(c+d x)}{3 d}+\frac {a b \left (2 a^2+b^2\right ) \tan ^4(c+d x)}{d}+\frac {\left (a^4+12 a^2 b^2+b^4\right ) \tan ^5(c+d x)}{5 d}+\frac {2 a b \left (a^2+2 b^2\right ) \tan ^6(c+d x)}{3 d}+\frac {2 b^2 \left (3 a^2+b^2\right ) \tan ^7(c+d x)}{7 d}+\frac {a b^3 \tan ^8(c+d x)}{2 d}+\frac {b^4 \tan ^9(c+d x)}{9 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.57 \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=\frac {\frac {1}{5} \left (a^2+b^2\right )^2 (a+b \tan (c+d x))^5-\frac {2}{3} a \left (a^2+b^2\right ) (a+b \tan (c+d x))^6+\frac {2}{7} \left (3 a^2+b^2\right ) (a+b \tan (c+d x))^7-\frac {1}{2} a (a+b \tan (c+d x))^8+\frac {1}{9} (a+b \tan (c+d x))^9}{b^5 d} \]

[In]

Integrate[Sec[c + d*x]^10*(a*Cos[c + d*x] + b*Sin[c + d*x])^4,x]

[Out]

(((a^2 + b^2)^2*(a + b*Tan[c + d*x])^5)/5 - (2*a*(a^2 + b^2)*(a + b*Tan[c + d*x])^6)/3 + (2*(3*a^2 + b^2)*(a +
 b*Tan[c + d*x])^7)/7 - (a*(a + b*Tan[c + d*x])^8)/2 + (a + b*Tan[c + d*x])^9/9)/(b^5*d)

Maple [A] (verified)

Time = 1.90 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.06

method result size
parts \(-\frac {a^{4} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}+\frac {b^{4} \left (\frac {\sin \left (d x +c \right )^{5}}{9 \cos \left (d x +c \right )^{9}}+\frac {4 \sin \left (d x +c \right )^{5}}{63 \cos \left (d x +c \right )^{7}}+\frac {8 \sin \left (d x +c \right )^{5}}{315 \cos \left (d x +c \right )^{5}}\right )}{d}+\frac {4 a \,b^{3} \left (\frac {\sec \left (d x +c \right )^{8}}{8}-\frac {\sec \left (d x +c \right )^{6}}{6}\right )}{d}+\frac {2 a^{3} b \sec \left (d x +c \right )^{6}}{3 d}+\frac {6 a^{2} b^{2} \left (\frac {\sin \left (d x +c \right )^{3}}{7 \cos \left (d x +c \right )^{7}}+\frac {4 \sin \left (d x +c \right )^{3}}{35 \cos \left (d x +c \right )^{5}}+\frac {8 \sin \left (d x +c \right )^{3}}{105 \cos \left (d x +c \right )^{3}}\right )}{d}\) \(213\)
derivativedivides \(\frac {-a^{4} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )+\frac {2 a^{3} b}{3 \cos \left (d x +c \right )^{6}}+6 a^{2} b^{2} \left (\frac {\sin \left (d x +c \right )^{3}}{7 \cos \left (d x +c \right )^{7}}+\frac {4 \sin \left (d x +c \right )^{3}}{35 \cos \left (d x +c \right )^{5}}+\frac {8 \sin \left (d x +c \right )^{3}}{105 \cos \left (d x +c \right )^{3}}\right )+4 a \,b^{3} \left (\frac {\sin \left (d x +c \right )^{4}}{8 \cos \left (d x +c \right )^{8}}+\frac {\sin \left (d x +c \right )^{4}}{12 \cos \left (d x +c \right )^{6}}+\frac {\sin \left (d x +c \right )^{4}}{24 \cos \left (d x +c \right )^{4}}\right )+b^{4} \left (\frac {\sin \left (d x +c \right )^{5}}{9 \cos \left (d x +c \right )^{9}}+\frac {4 \sin \left (d x +c \right )^{5}}{63 \cos \left (d x +c \right )^{7}}+\frac {8 \sin \left (d x +c \right )^{5}}{315 \cos \left (d x +c \right )^{5}}\right )}{d}\) \(236\)
default \(\frac {-a^{4} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )+\frac {2 a^{3} b}{3 \cos \left (d x +c \right )^{6}}+6 a^{2} b^{2} \left (\frac {\sin \left (d x +c \right )^{3}}{7 \cos \left (d x +c \right )^{7}}+\frac {4 \sin \left (d x +c \right )^{3}}{35 \cos \left (d x +c \right )^{5}}+\frac {8 \sin \left (d x +c \right )^{3}}{105 \cos \left (d x +c \right )^{3}}\right )+4 a \,b^{3} \left (\frac {\sin \left (d x +c \right )^{4}}{8 \cos \left (d x +c \right )^{8}}+\frac {\sin \left (d x +c \right )^{4}}{12 \cos \left (d x +c \right )^{6}}+\frac {\sin \left (d x +c \right )^{4}}{24 \cos \left (d x +c \right )^{4}}\right )+b^{4} \left (\frac {\sin \left (d x +c \right )^{5}}{9 \cos \left (d x +c \right )^{9}}+\frac {4 \sin \left (d x +c \right )^{5}}{63 \cos \left (d x +c \right )^{7}}+\frac {8 \sin \left (d x +c \right )^{5}}{315 \cos \left (d x +c \right )^{5}}\right )}{d}\) \(236\)
risch \(\frac {16 i \left (21 a^{4}+b^{4}-18 a^{2} b^{2}+945 a^{4} {\mathrm e}^{10 i \left (d x +c \right )}+9 b^{4} {\mathrm e}^{2 i \left (d x +c \right )}-126 b^{4} {\mathrm e}^{6 i \left (d x +c \right )}-315 b^{4} {\mathrm e}^{10 i \left (d x +c \right )}-1260 a^{2} b^{2} {\mathrm e}^{12 i \left (d x +c \right )}-2520 i a^{3} b \,{\mathrm e}^{10 i \left (d x +c \right )}-1890 a^{2} b^{2} {\mathrm e}^{10 i \left (d x +c \right )}-2520 i a^{3} b \,{\mathrm e}^{8 i \left (d x +c \right )}-840 i a^{3} b \,{\mathrm e}^{6 i \left (d x +c \right )}+840 i a \,b^{3} {\mathrm e}^{6 i \left (d x +c \right )}+840 i a \,b^{3} {\mathrm e}^{12 i \left (d x +c \right )}-840 i a^{3} b \,{\mathrm e}^{12 i \left (d x +c \right )}+1701 a^{4} {\mathrm e}^{8 i \left (d x +c \right )}+441 b^{4} {\mathrm e}^{8 i \left (d x +c \right )}+1554 a^{4} {\mathrm e}^{6 i \left (d x +c \right )}+756 a^{4} {\mathrm e}^{4 i \left (d x +c \right )}+36 b^{4} {\mathrm e}^{4 i \left (d x +c \right )}+189 a^{4} {\mathrm e}^{2 i \left (d x +c \right )}-378 a^{2} b^{2} {\mathrm e}^{8 i \left (d x +c \right )}-252 a^{2} b^{2} {\mathrm e}^{6 i \left (d x +c \right )}-648 a^{2} b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-162 a^{2} b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+210 a^{4} {\mathrm e}^{12 i \left (d x +c \right )}+210 b^{4} {\mathrm e}^{12 i \left (d x +c \right )}\right )}{315 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{9}}\) \(403\)
parallelrisch \(-\frac {2 \left (a^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{16}-4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{15} a^{3} b +8 \left (a^{2} b^{2}-\frac {2}{3} a^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}+4 \left (3 a^{3} b -2 a \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}+\frac {4 \left (19 a^{4}-12 a^{2} b^{2}+4 b^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{5}+\frac {4 \left (-19 a^{3} b -2 a \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{3}+\frac {24 \left (\frac {8}{7} b^{4}-6 a^{4}+\frac {31}{7} a^{2} b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{5}+4 \left (11 a^{3} b -4 a \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+\frac {2 \left (\frac {269}{3} a^{4}+\frac {1744}{63} b^{4}-\frac {688}{7} a^{2} b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{5}+4 \left (-11 a^{3} b +4 a \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+\frac {24 \left (\frac {8}{7} b^{4}-6 a^{4}+\frac {31}{7} a^{2} b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{5}+\frac {4 \left (19 a^{3} b +2 a \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{3}+\frac {4 \left (19 a^{4}-12 a^{2} b^{2}+4 b^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{5}+4 \left (-3 a^{3} b +2 a \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+8 \left (a^{2} b^{2}-\frac {2}{3} a^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{3} b +a^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{9}}\) \(449\)

[In]

int(sec(d*x+c)^10*(cos(d*x+c)*a+b*sin(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

-a^4/d*(-8/15-1/5*sec(d*x+c)^4-4/15*sec(d*x+c)^2)*tan(d*x+c)+b^4/d*(1/9*sin(d*x+c)^5/cos(d*x+c)^9+4/63*sin(d*x
+c)^5/cos(d*x+c)^7+8/315*sin(d*x+c)^5/cos(d*x+c)^5)+4*a*b^3/d*(1/8*sec(d*x+c)^8-1/6*sec(d*x+c)^6)+2/3*a^3*b/d*
sec(d*x+c)^6+6*a^2*b^2/d*(1/7*sin(d*x+c)^3/cos(d*x+c)^7+4/35*sin(d*x+c)^3/cos(d*x+c)^5+8/105*sin(d*x+c)^3/cos(
d*x+c)^3)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.83 \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=\frac {315 \, a b^{3} \cos \left (d x + c\right ) + 420 \, {\left (a^{3} b - a b^{3}\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (8 \, {\left (21 \, a^{4} - 18 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{8} + 4 \, {\left (21 \, a^{4} - 18 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{6} + 3 \, {\left (21 \, a^{4} - 18 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{4} + 35 \, b^{4} + 10 \, {\left (27 \, a^{2} b^{2} - 5 \, b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{630 \, d \cos \left (d x + c\right )^{9}} \]

[In]

integrate(sec(d*x+c)^10*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="fricas")

[Out]

1/630*(315*a*b^3*cos(d*x + c) + 420*(a^3*b - a*b^3)*cos(d*x + c)^3 + 2*(8*(21*a^4 - 18*a^2*b^2 + b^4)*cos(d*x
+ c)^8 + 4*(21*a^4 - 18*a^2*b^2 + b^4)*cos(d*x + c)^6 + 3*(21*a^4 - 18*a^2*b^2 + b^4)*cos(d*x + c)^4 + 35*b^4
+ 10*(27*a^2*b^2 - 5*b^4)*cos(d*x + c)^2)*sin(d*x + c))/(d*cos(d*x + c)^9)

Sympy [F(-1)]

Timed out. \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**10*(a*cos(d*x+c)+b*sin(d*x+c))**4,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.96 \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=\frac {42 \, {\left (3 \, \tan \left (d x + c\right )^{5} + 10 \, \tan \left (d x + c\right )^{3} + 15 \, \tan \left (d x + c\right )\right )} a^{4} + 36 \, {\left (15 \, \tan \left (d x + c\right )^{7} + 42 \, \tan \left (d x + c\right )^{5} + 35 \, \tan \left (d x + c\right )^{3}\right )} a^{2} b^{2} + 2 \, {\left (35 \, \tan \left (d x + c\right )^{9} + 90 \, \tan \left (d x + c\right )^{7} + 63 \, \tan \left (d x + c\right )^{5}\right )} b^{4} + \frac {105 \, {\left (4 \, \sin \left (d x + c\right )^{2} - 1\right )} a b^{3}}{\sin \left (d x + c\right )^{8} - 4 \, \sin \left (d x + c\right )^{6} + 6 \, \sin \left (d x + c\right )^{4} - 4 \, \sin \left (d x + c\right )^{2} + 1} - \frac {420 \, a^{3} b}{{\left (\sin \left (d x + c\right )^{2} - 1\right )}^{3}}}{630 \, d} \]

[In]

integrate(sec(d*x+c)^10*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="maxima")

[Out]

1/630*(42*(3*tan(d*x + c)^5 + 10*tan(d*x + c)^3 + 15*tan(d*x + c))*a^4 + 36*(15*tan(d*x + c)^7 + 42*tan(d*x +
c)^5 + 35*tan(d*x + c)^3)*a^2*b^2 + 2*(35*tan(d*x + c)^9 + 90*tan(d*x + c)^7 + 63*tan(d*x + c)^5)*b^4 + 105*(4
*sin(d*x + c)^2 - 1)*a*b^3/(sin(d*x + c)^8 - 4*sin(d*x + c)^6 + 6*sin(d*x + c)^4 - 4*sin(d*x + c)^2 + 1) - 420
*a^3*b/(sin(d*x + c)^2 - 1)^3)/d

Giac [A] (verification not implemented)

none

Time = 0.48 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.06 \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=\frac {70 \, b^{4} \tan \left (d x + c\right )^{9} + 315 \, a b^{3} \tan \left (d x + c\right )^{8} + 540 \, a^{2} b^{2} \tan \left (d x + c\right )^{7} + 180 \, b^{4} \tan \left (d x + c\right )^{7} + 420 \, a^{3} b \tan \left (d x + c\right )^{6} + 840 \, a b^{3} \tan \left (d x + c\right )^{6} + 126 \, a^{4} \tan \left (d x + c\right )^{5} + 1512 \, a^{2} b^{2} \tan \left (d x + c\right )^{5} + 126 \, b^{4} \tan \left (d x + c\right )^{5} + 1260 \, a^{3} b \tan \left (d x + c\right )^{4} + 630 \, a b^{3} \tan \left (d x + c\right )^{4} + 420 \, a^{4} \tan \left (d x + c\right )^{3} + 1260 \, a^{2} b^{2} \tan \left (d x + c\right )^{3} + 1260 \, a^{3} b \tan \left (d x + c\right )^{2} + 630 \, a^{4} \tan \left (d x + c\right )}{630 \, d} \]

[In]

integrate(sec(d*x+c)^10*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="giac")

[Out]

1/630*(70*b^4*tan(d*x + c)^9 + 315*a*b^3*tan(d*x + c)^8 + 540*a^2*b^2*tan(d*x + c)^7 + 180*b^4*tan(d*x + c)^7
+ 420*a^3*b*tan(d*x + c)^6 + 840*a*b^3*tan(d*x + c)^6 + 126*a^4*tan(d*x + c)^5 + 1512*a^2*b^2*tan(d*x + c)^5 +
 126*b^4*tan(d*x + c)^5 + 1260*a^3*b*tan(d*x + c)^4 + 630*a*b^3*tan(d*x + c)^4 + 420*a^4*tan(d*x + c)^3 + 1260
*a^2*b^2*tan(d*x + c)^3 + 1260*a^3*b*tan(d*x + c)^2 + 630*a^4*tan(d*x + c))/d

Mupad [B] (verification not implemented)

Time = 26.00 (sec) , antiderivative size = 447, normalized size of antiderivative = 2.22 \[ \int \sec ^{10}(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx=-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (\frac {152\,a^4}{5}-\frac {96\,a^2\,b^2}{5}+\frac {32\,b^4}{5}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}\,\left (\frac {152\,a^4}{5}-\frac {96\,a^2\,b^2}{5}+\frac {32\,b^4}{5}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (-\frac {288\,a^4}{5}+\frac {1488\,a^2\,b^2}{35}+\frac {384\,b^4}{35}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,\left (-\frac {288\,a^4}{5}+\frac {1488\,a^2\,b^2}{35}+\frac {384\,b^4}{35}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,\left (\frac {1076\,a^4}{15}-\frac {2752\,a^2\,b^2}{35}+\frac {6976\,b^4}{315}\right )+2\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{17}-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {32\,a^4}{3}-16\,a^2\,b^2\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{15}\,\left (\frac {32\,a^4}{3}-16\,a^2\,b^2\right )+2\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (16\,a\,b^3-24\,a^3\,b\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}\,\left (16\,a\,b^3-24\,a^3\,b\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\left (32\,a\,b^3-88\,a^3\,b\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\,\left (32\,a\,b^3-88\,a^3\,b\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\left (\frac {152\,a^3\,b}{3}+\frac {16\,a\,b^3}{3}\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}\,\left (\frac {152\,a^3\,b}{3}+\frac {16\,a\,b^3}{3}\right )+8\,a^3\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-8\,a^3\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{16}}{d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )}^9} \]

[In]

int((a*cos(c + d*x) + b*sin(c + d*x))^4/cos(c + d*x)^10,x)

[Out]

-(tan(c/2 + (d*x)/2)^5*((152*a^4)/5 + (32*b^4)/5 - (96*a^2*b^2)/5) + tan(c/2 + (d*x)/2)^13*((152*a^4)/5 + (32*
b^4)/5 - (96*a^2*b^2)/5) + tan(c/2 + (d*x)/2)^7*((384*b^4)/35 - (288*a^4)/5 + (1488*a^2*b^2)/35) + tan(c/2 + (
d*x)/2)^11*((384*b^4)/35 - (288*a^4)/5 + (1488*a^2*b^2)/35) + tan(c/2 + (d*x)/2)^9*((1076*a^4)/15 + (6976*b^4)
/315 - (2752*a^2*b^2)/35) + 2*a^4*tan(c/2 + (d*x)/2)^17 - tan(c/2 + (d*x)/2)^3*((32*a^4)/3 - 16*a^2*b^2) - tan
(c/2 + (d*x)/2)^15*((32*a^4)/3 - 16*a^2*b^2) + 2*a^4*tan(c/2 + (d*x)/2) + tan(c/2 + (d*x)/2)^4*(16*a*b^3 - 24*
a^3*b) - tan(c/2 + (d*x)/2)^14*(16*a*b^3 - 24*a^3*b) + tan(c/2 + (d*x)/2)^8*(32*a*b^3 - 88*a^3*b) - tan(c/2 +
(d*x)/2)^10*(32*a*b^3 - 88*a^3*b) + tan(c/2 + (d*x)/2)^6*((16*a*b^3)/3 + (152*a^3*b)/3) - tan(c/2 + (d*x)/2)^1
2*((16*a*b^3)/3 + (152*a^3*b)/3) + 8*a^3*b*tan(c/2 + (d*x)/2)^2 - 8*a^3*b*tan(c/2 + (d*x)/2)^16)/(d*(tan(c/2 +
 (d*x)/2)^2 - 1)^9)